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Abstract—Seaspray is an end-to-end system designed to counter CAPTCHA cloaking, a technique used by phishers to hide malicious
content from automated detection. Building on approaches like Crawl-shing, Seaspray first identifies suspicious sites, detects
CAPTCHAs using YOLO, and classifies and solves them with a Vision Transformer [2] to reveal hidden content. It then verifies brand
legitimacy via logo detection with YOLO [7] and visual embeddings using a ViT encoder [2], matched against known brands. By unifying
CAPTCHA de-cloaking and brand verification within a Transformer-based framework, Seaspray offers a modular and robust solution.
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1 INTRODUCTION

Phishing emails have permeated our digital communication,
taking advantage of vulnerabilities that the information
technology system poses to users. Given the potential for
further cybersecurity incidents, theft of personally iden-
tifiable information, and damage to organizations’ assets,
cybersecurity professionals have implemented various miti-
gation practices to combat phishing emails [18]. To address
this problem, we need to detect websites that are phishing
and alert the user to imminent danger. The most common
approach is the use of crawlers, automated bots that with
a seed of websites can explore the Internet through links.
Hackers have introduced a technique called cloaking that
shows two different websites to humans and crawlers. In
this way, crawlers can’t detect a phishing website, since they
see a different page. The most common cloaking technique
is CAPTCHA cloaking which, with the use of CAPTCHA,
allows hackers to block the page to crawlers and make the
website more reliable for the users. Seaspray enhances the
current state-of-the-art in CAPTCHA decloaking, building
on the work of Teoh et al. [20], by leveraging Visual Trans-
formers [2], [25]. Specifically, we use Visual Transformers to
detect and classify CAPTCHAs directly from screenshots,
and then proceed to solve them. Once the CAPTCHA is
solved and we can view the webpage as a regular user
would, we apply a cutting-edge phishing detection method.
Building on the approach by Liu and Lin [13], we use
Transformer-based deep learning models to identify which
brand the website is trying to represent. This step is crucial
because if a site claims to be, say, a bank or a popular online
service, but the domain or other details don’t match the
real brand, it’s a strong sign the site might be a phishing
attempt. Brand identification helps us catch these kinds of
impersonations more accurately.
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2 BACKGROUND

One effective strategy in the fight against phishing is by
using crawlers. These are automated bots that browse
the internet by following links to check if websites are
involved in phishing or not. Criminals and phishing experts
frequently leverage cloaking mechanisms to evade detection
software and web crawlers. Cloaking is a technique used
by phishers to evade detection, in which phishing content
is selectively displayed only to entities identified as real
human users, while concealing it from automated detection
systems such as crawlers. This method helps phishing
websites remain hidden from security tools and appear
legitimate during automated scans [11].

There are several different types of Cloaking. In particu-
lar we can distinguish:

• Server side cloaking: where attackers try to predict a
possible crawler from the IP Address or User Agents.

• Client side cloaking: where attackers try to predict
the crawler from cookies, the way the user interact
with the website.

Recent research papers like PhishTime [15] and Crawl-
Phish [28] show an increasing trend of CAPTCHA-
protected phishing pages. Hiding phishing content behind
CAPTCHAs prevents security crawlers from detecting ma-
licious content and adds a legitimate look to phishing login
pages [17].

Our appoach to detect CAPTCHA cloaking is based on
Transformers. Transformer is a network architecture based
on attention mechanisms, dispensing with recurrence and
convolution entirely [25]. Transformer architecture was
used mainly for NLP tasks, but Visual Transformers offer
a nice competitor to CNN in Computer Vision tasks [2]. The
idea behind Visual Transformers is to divide the picture in
different patches that are normalized and encoded. These
patches are passed through a self-attention layer that figures
out how each patch relates to the others and evaluate an
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attention score. The attention score is used as input for a
multi-layer perceptron that will execute a classification task.

3 OVERVIEW OF YOUR PROPOSED APPROACH

Our proposal outlines a multi-stage detection pipeline, vi-
sually represented in Figure 1. This pipeline begins with a
De-cloaked version of Crawl-shing [19]. The De-cloaking ap-
proach, inspired by PhishDecloaker [20] and implemented
using Transformer models [25], aims to reveal concealed
content. The initial output is a list of suspicious websites,
which are subsequently verified through the brand identi-
fication method developed by Liu and Lin [13]. After we
recognize the brand we can check if the domain is correct or
not.

3.1 Crawler
We propose adopting Crawl-shing [19] to enhance our ma-
licious content detection and optimize resource allocation.
This novel approach improves significantly upon traditional
methods. Crawl-shing works by crawling websites and
modeling web pages as graphs, enabling sophisticated com-
parison against a database of known malicious sites. This
process identifies suspect, potentially phishing websites.
Crucially, this allows us to focus detection efforts exclusively
on high-risk targets, ensuring our time and resources are
utilized most effectively.

3.2 De-cloaking
A significant limitation of Crawl-shing is its vulnerabil-
ity to cloaking techniques. Specifically, the presence of a
CAPTCHA can render the system inoperable by preventing
the construction of a web page graph. To address this, we
propose a CAPTCHA De-cloaking mechanism, inspired by
the approach in [20]. Our approach achieves improved
performance by integrating advanced Transformer-based
models.

This de-cloaking component utilizes two distinct
Transformer-based models:

• YOLOv11 for Object Detection: While not exclusively
a Transformer, YOLOv11 incorporates several self-
attention layers within its convolutional architec-
ture, making it highly effective for identifying the
CAPTCHA challenge elements.

• Vision Transformer (ViT) for Classification: A fine-
tuned Visual Transformer (ViT) model is employed
for the CAPTCHA classification task, specifically
trained on a dataset of CAPTCHA images.

By combining YOLOv11 for CAPTCHA detection and
ViT for CAPTCHA classification, we establish a powerful
CAPTCHA processing system, leveraging the strengths of
a leading object detection model and a cutting-edge image
classifier. Once CAPTCHA is detected by YOLOv11 and its
type identified by ViT, we employ advanced transformer-
based solvers, such as the one introduced by Plesner et
al. [16]—to effectively solve the CAPTCHA. Following the
methodology outlined in [16], this involves using a fine-
tuned model, adapted to handle different visual formats
of CAPTCHAs. Performs image classification in grid-based

challenges and image segmentation for single-image chal-
lenges to accurately identify and select the required ele-
ments.

3.3 Brand Identification
We propose an enhancement to the SIFT-based brand iden-
tification approach introduced by Liu and Lin [13]. Their
method involves extracting and matching SIFT feature
points between a reference logo and a webpage screenshot
to detect logo presence.

Our key improvement replaces this feature matching
with an embedding-based approach leveraging a Visual
Transformer (ViT), preceded by a YOLO object detection
step to localize potential logo regions on the webpage. The
ViT is employed as an image encoder, trained to produce
rich, fixed-size vector representations (embeddings) for in-
put images. A crucial property of this learned embedding
space is that visually similar or semantically related images
are mapped to proximate points. For brand identification,
we first construct a database of pre-computed embeddings
for known logos. During the prediction phase, we apply the
YOLO model to the webpage screenshot to detect candidate
logo bounding boxes. Then, for each detected region, an
embedding is generated using the ViT encoder. The brand
is then recognized by finding the most similar embedding
within the database (e.g., using nearest neighbor search)
among those generated from the detected regions. This ap-
proach offers significant advantages over traditional feature-
matching techniques, granting enhanced scalability, flexibil-
ity, efficiency, and robustness by first precisely locating the
logo.

3.4 Adversarial Attacks
Our strategic approach to model training incorporates data
augmentation as a fundamental technique across all models.
This method is employed with the specific objective of
building highly robust and resilient models. By systemat-
ically creating and incorporating diverse variations of the
training data – simulating potential real-world variations
and perturbations – we significantly expand the effective
training dataset. This expanded exposure allows the mod-
els to learn more generalizable features and patterns, fun-
damentally improving their ability to maintain accuracy
and stability when confronted with unstructured noise and
enhancing their defense mechanisms against deliberately
engineered adversarial inputs designed to exploit model
weaknesses.

4 EVALUATION

4.1 Detection Metrics & Setup
For CAPTCHA detection, we are going to measure pre-
cision, recall, and F1-score at the object-detection level,
together with mean Average Precision (mAP) and mean
Average Recall (mAR) across the test set [20]. High preci-
sion minimizes false positives (incorrectly flagged legitimate
images), while high recall ensures most actual CAPTCHAs
are detected. We choose YOLOv11 for its proven real-
time accuracy in similar tasks [7]. The experiments involve
screenshots or UI renderings containing CAPTCHAs, with
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Fig. 1. Seaspray Pipeline

bounding boxes as ground truth. We are also planning
to report mAP@0.5 and corresponding precision/recall to
compare with prior studies. For example, PhishDecloaker,
using YOLO, achieved a CAPTCHA localization mAP of
approximately 0.9 [20]. Seaspray’s detector will be validated
on diverse pages to ensure high recall without excessive
false alarms.

4.2 Classification Metrics & Setup

For CAPTCHA solving (classification), we treat it as an
image recognition problem, assessing character-level accu-
racy, CAPTCHA solve rate, and precision/recall in multi-
class scenarios. A CAPTCHA is solved only if all characters
or the entire response are correct. State-of-the-art meth-
ods achieved more than 96% character-level accuracy and
around 74% full CAPTCHA solve rates [26]. For example,
Want et al. (2021) used a CNN-GAN solver, achieving
around 96% character accuracy and 74% complete solves,
with 4-8 ms GPU solve time [26]. We are going to compare
Seaspray’s ViT-based solver to these benchmarks, expecting
competitive results due to Transformers’ proven success in
image classification [2]. Precision and recall will measure
correctly solved CAPTCHAs (positives), and for multi-label
tasks, we are going to use per-character metrics and overall
sequence accuracy.

4.3 Dataset Composition & Diversity

Robust evaluation demands a diverse CAPTCHA dataset,
compiled from varied styles, distortions, and providers (in-
cluding reCAPTCHA [3], hCAPTCHA [5], FunCAPTCHA,
various fonts, lengths, noise, etc.). Prior research, such as
PhishDecloaker, used 6,612 images from 38 CAPTCHA
types and evaluated generalization on 11 unseen categories
[21]. Similarly, our dataset includes both synthetic and real
phishing-kit CAPTCHAs to avoid overfitting. Importantly,
the dataset distribution covers diverse formats, like pure
text, image-click, drag-and-drop puzzles, ensuring the test
set introduces unseen formats for robustness assessment.
Prior studies highlight risks of model overspecialization,
so it is essential to measure performance on unfamiliar
CAPTCHA types. For instance, PhishDecloaker’s solver
maintained 86% precision and 69% recall on entirely new
CAPTCHAs, which provides a useful baseline for evaluat-
ing our Transformer-based solver’s generalization [22].

4.4 ViT Model Configuration

Seaspray utilizes a Vision Transformer (ViT) backbone
(which has around 86 million parameters) with a default
patch size of 16x16 pixels, which balances accuracy and

speed. CAPTCHA images are consistently resized to en-
sure that characters remain distinguishable, and, if needed,
smaller patches, such as 8x8, may be used. The ViT is
initialized with ImageNet-pretrained weights for faster con-
vergence, then fine-tuned on our dataset with extensive
augmentation, such as random rotations, scaling, transla-
tion, noise or occlusions, color jitter, and elastic distortions,
which is vital for robustness [26]. Training will likely use
the Adam optimizer [8] with moderate learning rates to
retain pre-trained features and early stopping based on
validation accuracy. Additionally, we will test regularization
methods, such as dropout and stochastic depth, to enhance
generalization. Documenting the ViT configuration, such as
patch size and layers, and training approach, will ensure
reproducibility. Transformers have previously excelled in
distorted text recognition and have sometimes surpassed
CNN performance with sufficient augmentation and data
[26].

4.5 Runtime Analysis
Seaspray can process CAPTCHAs so quickly that they
would hardly add to page latency. YOLOv5 needs just 1.9
ms at 640x640 on an NVIDIA T4 [23], and tiny variants
stay under 15 ms on a Tesla P100 [9]. Even on a CPU,
lightweight YOLO models can run near real-time, for in-
stance, around 30 FPS on a high-end i7 CPU [9]. Consid-
ering the performances of earlier YOLO models, Seaspray,
powered by a YOLOv11 detector, is expected to locate a
full webpage screenshot with 1080p resolution in less than
50 ms. Once found, a ViT-base solver answers in tens of
milliseconds range on mid-tier GPUs [1] and in less than 7
ms on A100 or RTX 4090 [12], which is matching the fastest
CNN solvers that are between 4-8 ms [26] and far ahead of
GAN methods that are around 50 ms [27]. Since both stages
are lightweight, pre-processing and/or post-processing of
images adds only a few additional milliseconds. Taken
together, detection plus solving introduce merely 0.05-0.1s
to a page that already spends 0.5-2.0s on network fetch
and rendering. So, one GPU comfortably clears around 20
pages per second and scales linearly with batching or more
GPUs, and real-world cost is even lower because most pages
contain no CAPTCHA. In contrast, PhishDecloaker’s five-
model browser pipeline can stall for several seconds on
complex reCAPTCHAs [20], whereas Seaspray is expected
to finish the same task in less than 0.1s. A CPU-only
browser-extension build still wraps up in less than 0.2s
using a lightweight YOLO model [9], and a single T4 server
GPU scans hundreds of cloaked pages per minute [10],
while SOC pipelines that inspect millions of emails per day
simply add more GPU workers to keep pace [6]. Ongoing
improvements in transformer libraries and GPU silicon will
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continue to shave these figures, ensuring Seaspray remains
comfortably fast for real-time phishing defense.

4.6 Robustness
Robustness is central to our evaluation. We will test Sea-
spray’s CAPTCHA solver on unseen CAPTCHA formats
to assess generalization capability. For example, if trained
primarily on text CAPTCHAs, we will evaluate perfor-
mance on image-click CAPTCHAs to identify limitations
or potential extensions. While additional modules might be
needed for certain interaction types, our experiments will
document how the Transformer model handles variations
with text CAPTCHAs. In PhishDecloaker, high precision
was maintained on unseen CAPTCHA types [22]. We will
similarly quantify accuracy reductions when encountering
novel styles, and if the decreases are small, this will indicate
strong robustness.

We will also assess adversarial robustness by actively
testing our ViT model against adversarial attacks, such as
FGSM and PGD, which are constrained to subtle human-
unnoticeable perturbations, and measure the impacts on
accuracy [22]. PhishDecloaker previously subjected their
models to multiple adversarial attacks (FGSM, JSMA, PGD,
DeepFool) and they showed strong resistance, which we
also aim for [22]. We will further evaluate sensitivity to input
variations like brightness, contrast, and scaling to ensure the
model isn’t overly sensitive to minor image changes.

Throughout evaluations, we will incorporate statistical
significance measures. All reported performance metrics,
especially when compared to baselines, will include con-
fidence intervals or standard deviations based on multiple
runs or bootstrapped samples to reflect test variability and
training nondeterminism.

Finally, we will compare Seaspray directly to known
benchmarks. For CAPTCHA detection, we cite relevant
results, especially from PhishDecloaker [20]. For CAPTCHA
solving, comparisons will include academic benchmarks
and available industry claims. In addition, runtime compar-
isons will also be provided. For example, Seaspray solving
CAPTCHAs in around 50 ms compared to significantly
slower brute-force or traditional OCR methods. This com-
prehensive evaluation will establish Seaspray’s YOLOv11
and ViT combination as effective and justified, and po-
tentially set new standards in automated CAPTCHA de-
cloaking for phishing detection.

4.7 Experimental Results
For the detection, we fine-tuned YOLOv8 model on a single
class over 10 epochs. As shown in Figure 2, training losses
decrease steadily across all epochs, indicating consistent
learning progress without overfitting during training. Val-
idation losses briefly spike around epoch 3 but quickly
stabilize and drop, which is suggesting a transient instability
or noisy batch early in training. After that, the model gener-
alizes well. Precision and recall metrics show an initial dip
but then improve steadily, with precision reaching near 1.0
by epoch 10 and recall above 0.95. mAP@0.5 and mAP@0.5-
0.95 both rise consistently after a dip around epoch 3 and
fall just under 1.0. Detailed training and validation metrics
are provided in Table 2.

Fig. 2. Graphs indicating training/validation losses, precision, recall and
mAP@0.5, mAP@0.5-0.95

For the classification, we fine-tuned Google’s ViT on a di-
verse set of CAPTCHA classes, achieving a classification ac-
curacy of 99% across 1244 test samples. The macro-average
precision, recall, and F1 scores were consistently high at
0.99, 0.98, and 0.98 respectively. Class-wise performance,
shown in the Table 1, demonstrates that most CAPTCHA
types reached perfect or near-perfect scores, with slightly
lower performance observed for complex visual tasks such
as ”geetest click phrase”, due to their increased difficulty.

Class Precision Recall F1-score Support
baidu slide rotate 1.00 0.95 0.97 20
dingxiang audio 1.00 1.00 1.00 20
dingxiang click area 1.00 1.00 1.00 20
dingxiang click difference 1.00 1.00 1.00 20
dingxiang click font 1.00 1.00 1.00 20
dingxiang click icon 1.00 1.00 1.00 20
dingxiang click vr 1.00 1.00 1.00 20
dingxiang click word 0.95 1.00 0.98 20
dingxiang drag 1.00 1.00 1.00 20
dingxiang slide puzzle 1.00 1.00 1.00 20
dingxiang slide puzzle2 1.00 1.00 1.00 20
dingxiang slide rotate 1.00 1.00 1.00 20
geetest checkbox 1.00 1.00 1.00 20
geetest click icon 0.69 0.90 0.78 20
geetest click phrase 0.93 0.65 0.76 20
geetest click word 0.95 0.95 0.95 20
geetest game playing 1.00 1.00 1.00 20
geetest game playing2 1.00 1.00 1.00 20
geetest select 1.00 1.00 1.00 20
geetest slide puzzle 1.00 1.00 1.00 20
hcaptcha 1.00 1.00 1.00 20
hcaptcha checkbox 1.00 1.00 1.00 20
netease click icon 1.00 1.00 1.00 20
netease click phrase 0.95 1.00 0.98 20
netease click vr 1.00 1.00 1.00 20
netease click word 1.00 1.00 1.00 20
netease drag 1.00 1.00 1.00 20
netease slide 1.00 0.95 0.97 20
press and hold 1.00 1.00 1.00 20
recaptchav2 1.00 1.00 1.00 20
recaptchav2 checkbox 1.00 1.00 1.00 20
tencent slide 1.00 1.00 1.00 20
text 1 0.98 0.97 0.98 64
text 2 0.99 1.00 0.99 200
text 3 1.00 1.00 1.00 200
text 4 1.00 0.97 0.98 100
text 5 1.00 1.00 1.00 20
text 6 1.00 1.00 1.00 20
Accuracy 0.99 1244
Macro avg 0.99 0.98 0.98 1244
Weighted avg 0.99 0.99 0.99 1244

TABLE 1
Classification report for 38 captcha types

Qualitative analysis of training batches shown in Fig-
ure 3 for one representative training batch and one valida-
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tion batch in Figure 4 reveal accurate CAPTCHA localiza-
tion with high confidence predictions, mostly 0.9 to 1.0.

Fig. 3. One training batch result

(a) Ground Truth

(b) Predictions

Fig. 4. One validation batch: (a) Ground truth labels and (b) model
predictions.

5 RELATED WORK

5.1 CAPTCHA Cloaking in Phishing
CAPTCHA cloaking has become a popular technique in
phishing where attackers show automated scanners only

a blank or CAPTCHA page while real users who solve
the puzzle reach the malicious content [15] [28]. Oest et al.
reported that both server-side and client-side cloaking has
become a standard in phishing kits around 2018-2019 [28]
[15]. CrawlPhish (Zhang et al. 2021) conducted a large-scale
analysis of client-side evasion in phishing websites, and the
results show that between 23-33% of phishing sites used
some form of cloaking and many employed fake CAPTCHA
pages that mimic Google reCAPTCHA [28]. These gate-
keeper pages block security crawlers and also look credible
to users [28]. Another study, PhishTime (Van Acker et al.,
USENIX Security 2020), evaluated how different evasion
techniques affect phishing detection latency. They showed
that CAPTCHA-based cloaking can fully bypass automated
URL blacklists. In the experiments, when a phishing URL
used a pre-content CAPTCHA, detection rates from popular
tools dropped to 0% [20] [15]. In one case, Microsoft’s
SmartScreen detected one such phish only because it flagged
the obfuscated CAPTCHA script as malicious rather than
the hidden content [15]. This showcases how traditional
detectors are essentially blind for the true content behind
CAPTCHAs. As defenders improve visual scanning, phish-
ers add more sophisticated cloaking to avoid modern de-
fenses. A confirming report was published by Unit 42 in-
dicating 7,572 unique CAPTCHA-protected phishing URLs
within a single month in 2020 [17].

5.2 Existing Approaches to CAPTHA Cloaking Detec-
tion
PhishDecloaker (Teoh et al., USENIX Security 2024) is the
first dedicated solution for CAPTCHA-cloaked phishing
sites. It combines vision-based recognition with automatic
interaction [20]. In particular, it uses five deep learning
models to recognize many CAPTCHA formats and imitates
human actions, like moving the cursor and waiting [22]
[20]. By solving the puzzle, it exposes the underlying page,
so that the existing detectors can work. When PhishDe-
cloaker was paired with systems such as Phishpedia, over-
all detection rate on cloaked pages jumped from 0% to
74.25% [22]. In tests with previously unseen CAPTCHAs,
it achieved 86% precision and 69% recall [22]. It remained
effective against adversarial perturbations produced with
FGSM, JSMA, PGD, and DeepFool [22]. Moreover, a 30-
day field study with PhishDecloaker showed it discovered
7.6% more phishing websites that were using CAPTCHA
cloaking compared to other existing detectors [22].

5.3 Comparison of Techniques
Early phishing detectors relied on two main ideas, vi-
sual similarity and DOM or content analysis, with visual
methods dominating. PhishZoo (Afroz et al., 2011) and
VeriLogo (2012) are examples of early methods that com-
puted Scale-Invariant Feature Transform (SIFT) keypoints
on screenshot and compared them with a logo database
[14]. This worked at the time, yet suffered from high false
positives and could not scale to many brands. Phishpedia
(Lin et al., USENIX Security 2021) improved matters by
using a Faster R-CNN to spot the most visible logo on
the page, then applied SIFT matching to confirm which
brand it belonged to, and cross-checked that logo against



6

Epoch Time Train Box Train Cls Train DFL Prec(B) Rec(B) mAP50(B) mAP50-95(B) Val Box Val Cls Val DFL lr/pg0 lr/pg1 lr/pg2
1 158.755 0.76869 1.07143 0.96309 0.93202 0.89991 0.93342 0.77453 0.66686 0.68237 0.93768 0.000665 0.000665 0.000665
1 278.552 0.76869 1.07143 0.96309 0.93202 0.89991 0.93342 0.77453 0.66686 0.68237 0.93768 0.000665 0.000665 0.000665
1 381.178 0.76869 1.07143 0.96309 0.93202 0.89991 0.93342 0.77453 0.66686 0.68237 0.93768 0.000665 0.000665 0.000665
1 155.922 0.76869 1.07143 0.96309 0.93202 0.89991 0.93342 0.77453 0.66686 0.68237 0.93768 0.000665 0.000665 0.000665
2 294.168 0.73972 0.71613 0.96952 0.9067 0.79997 0.88302 0.74803 0.67292 0.69000 0.93971 0.001300 0.001300 0.001300
3 428.711 0.68171 0.63035 0.93568 0.84289 0.53698 0.63034 0.51924 0.89544 1.37515 1.11133 0.001810 0.001810 0.001810
4 562.846 0.62147 0.53413 0.90791 0.85282 0.76970 0.84949 0.73801 0.61409 0.78886 0.94615 0.001592 0.001592 0.001592
5 696.475 0.54648 0.44997 0.87551 0.96829 0.94266 0.97525 0.88400 0.45375 0.37442 0.84008 0.001316 0.001316 0.001316
6 830.941 0.48859 0.38546 0.85528 0.97305 0.94559 0.97748 0.91345 0.39048 0.31710 0.82367 0.001010 0.001010 0.001010
7 965.607 0.43906 0.33857 0.83922 0.96659 0.96913 0.98729 0.92525 0.36976 0.27466 0.81575 0.000704 0.000704 0.000704
8 1100.39 0.39442 0.29584 0.82455 0.97342 0.96819 0.99155 0.94701 0.32169 0.24548 0.80254 0.000428 0.000428 0.000428
9 1234.55 0.35816 0.26210 0.81657 0.98009 0.96708 0.99225 0.95277 0.30167 0.21620 0.79733 0.000209 0.000209 0.000209

10 1368.97 0.33423 0.24165 0.81178 0.99330 0.96352 0.99308 0.95799 0.28187 0.19940 0.79421 0.0000685 0.0000685 0.0000685

TABLE 2
Training and validation metrics across epochs

the domain [13] [24]. With this approach, the accuracy
was good when the page was fully visible. However, that
assumption broke when CAPTCHAs hid the content. In
PhishDecloaker’s tests, both Phishpedia and PhishIntention
fell to zero detection once a CAPTCHA blocked the page
[20]. PhishIntention (Liu et al., NDSS 2021) takes a visual
approach by segmenting a webpage into regions, such as
forms and images, and feeding each of them through a
CNN to infer the intended brand. It reportedly achieves
high precision in identifying phishing pages by the layout
and logos. However, PhishIntention and similar CNN-based
schemes are prevented by content-blocking CAPTCHAs, as
they cannot analyze what they can’t load. SIFT approaches
are also fragile when logos are slightly modified or when
CAPTCHA images introduce noise, whereas deep networks
that learn feature embeddings cope better with such vari-
ations. Seaspray’s adoption of Transformer-based models
(ViT) specifically addresses key weaknesses of CNNs and
traditional SIFT models. Unlike CNNs, which rely heav-
ily on localized features, Transformers inherently capture
broader global context through self-attention mechanisms,
which enable handling of distorted or noisy CAPTCHA
images. Once the page is revealed, a logo detector generates
an embedding vector with a pretrained network like a
Siamese network or contrastive-trained model on logos to
generate an embedding vector and compare it with vectors
for known brands. This method enables Transformers to
identify logos despite slight modifications, color shifts, or
stylized changes. The embedding approach also inherently
generalizes better, as adding new brands requires merely
placing their logos in the reference database without retrain-
ing, which allows seamless adaptation to novel scenarios. To
our knowledge, Seaspray is the first pipeline that couples
transformer CAPTCHA de-cloaking with logo verification
through vision embeddings. While PhishDecloaker only fo-
cuses on solving the CAPTCHA, and then handing the page
to external detector, Seaspray integrates all steps that lets the
CAPTCHA solver and the logo verifier share information
and improves overall robustness.

5.4 Performance Comparisons
CNN-based solutions, such as Phishpedia and PhishIn-
tention report high accuracy on standard phishing pages.
For example, PhishIntention had near 90% precision in
some studies, but those numbers dropped sharply to 0%
for cloaked pages until the CAPTCHA is removed [14].
PhishDecloaker showed that by adding an automated

CAPTCHA solver, one could boost detectors’ success on
cloaked pages to around 74% [22]. Seaspray aims to push
that even further by using more powerful models. Also by
using Transformers and extensive data augmentation, we
expect Seaspray to handle a wide range of CAPTCHAs,
including ones not seen before and be resistant to ad-
versarial manipulations. The arms race will continue as
attackers will try new tactics by designing CAPTCHAs that
are easy for humans to solve and tricky for machines. The
recently explored academic proposals show that this can
be potentially achieved using adversarial examples or dif-
fusion models that confuse machine vision [26]. However,
Seaspray’s modular pipeline eases adaptation because its
solving, page analysis, and brand verification components
can be upgraded separately. We also note that Seaspray
could be combined with complementary defenses. For ex-
ample, Unit 42 study found that checking for reuse of the
same reCAPTCHA site key across many pages is a strong
indicator of phishing campaigns [17]. This is a ”back-end”
signal that does not require solving the CAPTCHA at all. A
comprehensive anti-phishing system could use Seaspray to
analyze visual content while also correlating such network
or key reuse signal to catch even more attacks.

5.5 Novelty and Transferability
Seaspray’s use of learned visual embeddings for brand logos
offers value well beyond phishing pages. A single logo
detector and embedding matcher can be reused with almost
no adjustment to spot brand impersonation in fake product
photos and app icons, or scam social-media profiles. Earlier
systems such as Phishpedia, which relied on SIFT matching,
and PhishIntention, which trained a CNN only for webpage
screenshots, were limited to one scenario. In contrast, Sea-
spray’s module could easily scan email attachments or PDF
files for trademarked images and flag suspicious messages
that carry official branding. Because an embedding space
captures how logos look across many styles and variations,
features learned for phishing transfer smoothly to other se-
curity tasks [14] [4]. Seaspray therefore tackles CAPTCHA-
protected phishing while also delivering a flexible vision
component that improves protection across several domains
which is something prior work did not address.

6 CONCLUSIONS

Seaspray introduces an end-to-end pipeline to defeat
CAPTCHA-cloaked phishing. It improves upon existing
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graph-based crawlers like Crawl-shing [19], which are vul-
nerable to CAPTCHA cloaking. Seaspray addresses this
by first using YOLO and a Vision Transformer (ViT) to
detect and solve CAPTCHAs in HTML/screenshots. Once
the page is accessible, it applies embedding-based brand
logo detection to verify spoofed brands. Apart from being
modular and adaptable, its components can be retrained for
new CAPTCHA styles or brands. Deployable in Security
Operations Center (SOC) workflows, browser extensions, or
email filters, it operates in real time on modest hardware.
By unifying de-cloaking and verification, Seaspray shifts the
balance toward defenders, forcing attackers to adopt costlier
evasion tactics.
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