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Abstract—The Epigraphic Database Roma (EDR) stands as
the most comprehensive and precise collection of Ancient Roman
inscriptions, boasting over one hundred thousand entries curated
by the International Federation of Epigraphic Databases. Given
that the dating of these inscriptions span across centuries,
many have suffered from erosion, resulting in missing text. Our
objective is to reconstruct these lost segments. To achieve this,
we plan to fine-tune LatinBERT, the leading language model
for Latin, using the EDR database. This process will yield a
specialized language model adept at filling in the gaps within
these ancient texts. This advanced model represents a stepping
stone in language models trained on inscriptions.

Index Terms—Epigraphy, Text Reconstruction, Deep Learning,
Masked Language Modeling, Multi-task Learning, Chronological
Classification

I. INTRODUCTION

In Epigraphy, the study of inscriptions written on different
materials, such as stone and metal, text reconstruction is a
fundamental task. It’s not, however, an easy task, since the
toll of time on century old inscriptions can lead to a near
total loss of information, and current epigraphers’ methods
are time consuming, slow, and prone to mistakes. The chal-
lenge of automatically restoring these lacunae has garnered
increasing attention, with recent work such as Locaputo et
al. [1] outlining research agendas that propose various deep
learning strategies, including the fine-tuning of pretrained
language models like LatinBERT [2]. In this paper, we build
upon such promising directions by presenting a concrete
implementation and empirical evaluation of a method for text
reconstruction using the Epigraphic Database Rome (EDR)
[3]. We specifically fine-tune LatinBERT on the EDR dataset
and expand upon the proposed methodologies by incorporating
a multi-task learning objective for chronological classification.
Through this approach, we achieved a significant performance
improvement on the task of Masked Language Modeling when
compared to similar models, actively demonstrating the fea-
sibility of AI-driven reconstruction for Latin epigraphs. This
paper is structured as follows: It begins with an introduction to

the problem of reconstructing damaged Latin inscriptions from
the Epigraphic Database Roma (EDR) [3] and outlines the pro-
posed AI-driven solution. A review of relevant background and
related work in computational epigraphy and Latin language
modeling follows. The paper then describes the EDR dataset,
details the corpus manipulation techniques applied, and defines
the primary task of Masked Language Modeling (MLM)
alongside an auxiliary chronological classification task. The
methodology section elaborates on the model architecture, the
custom tokenization process, the training procedure, and the
metrics used for evaluation. Subsequently, the results section
presents the quantitative performance on both MLM (includ-
ing an ablation study) and classification tasks, supported by
qualitative examples of text completion. The paper concludes
by summarizing the key findings and suggesting directions for
future work.

II. BACKGROUND AND RELATED WORK

Prior work in computational epigraphy has explored various
avenues for text restoration. For Greek inscriptions, models
like PYTHIA and notably Ithaca [4] have demonstrated suc-
cess using neural networks, with Ithaca also incorporating ge-
ographical and chronological attribution. These advancements
have set a strong precedent for applying similar deep learning
techniques to Latin epigraphy.

The development of LatinBERT [2], a transformer-based
language model [5] pretrained on a broad corpus of Latin
texts, marked a significant step for Latin NLP. While the
original work showcased its utility on literary texts, its direct
application to the distinct domain of epigraphy requires further
investigation. Building on the availability of such models,
Locaputo et al. [1] proposed a research agenda for filling
lacunae in Latin inscriptions, outlining several deep learning
approaches, including the fine-tuning of pretrained models like
LatinBERT and exploring architectures similar to Ithaca.

More recently, Brunello et al. [6] presented a case study
specifically investigating the fine-tuning of LatinBERT on the



Epigraphik-Datenbank Clauss/Slaby (EDCS) for lacunae in-
filling in Latin inscriptions. Their experiments, which focused
on standard Masked Language Modeling (MLM) objectives,
reported suboptimal performance (e.g., a Top-1 token accu-
racy of 4.02% after fine-tuning on their processed dataset of
211,601 inscriptions), highlighting challenges in adapting ex-
isting models to the specific characteristics of epigraphic Latin
and underscoring the need for more effective methodologies or
refined fine-tuning strategies for this domain. Our work aims
to address this by introducing a multi-task learning approach
on the EDR dataset to improve MLM performance for Latin
inscriptions.

The Epigraphic Database Roma (EDR) [3], which forms
the basis of our dataset (82,534 cleaned records), is a crucial
resource, providing a richly annotated collection of Latin
inscriptions essential for training and evaluating computational
models for epigraphic tasks.

III. DATASET AND TASK DESCRIPTION

A. Epigraphic Database Roma

The Epigraphic Database Roma (EDR) [3] represents the
most comprehensive and sophisticated epigraphic dataset cur-
rently available. EDR is compiled according to a rigorous
rulebook that establishes core annotation principles to richly
describe each epigraphic entry. Given that the objective of
our project is to instill epigraphic Latin knowledge into the
LatinBERT model, these annotations had to be parsed into
representations of the epigraphs that closely mirror the original
texts. Comprising a total of 114,365 inscriptions, after cleaning
and parsing it reached a total of 82,534 records.

B. Corpus Manipulation

Many annotations simply indicated uncertainties in textual
reconstruction or denoted wholly missing words or letters
that could not be restored. These were removed and replaced
with an [UNK] token, ensuring that the model recognized the
absence of information in the affected sections. Another class
of annotation involved marking reconstructed text to signal
that certain words were not present in the original inscription.
In such cases, the tags were removed and the reconstructed
words retained, with the aim of training the model to perform
accurate text reconstruction.

Further annotations addressed abbreviations—shorthand
conventions employed by the original stonecutters to conserve
what was once a valuable material resource. To preserve the
full semantic content of these inscriptions, the abbreviated
characters were expanded into their complete word forms.
This was extremely significant because avoiding to expand
the abbreviations would’ve added an unnecessary layer of
complexity to the model tasks. Lastly, some annotations cor-
rected misspellings made by the original sculptors. For the
purpose of providing clean input to the model and avoid
unnecessary noise, these incorrect forms were replaced with
their standardized counterparts. It did not, however, reduce the
presence of linguistic variations in the inscriptions since said
annotations only address grossly mispelled words.

For example, this is how a standard entry in EDR appears:
P(ublius) Mulvius P(ubli) f(ilius)
Cla(udia)<BR>Atiliae Q(uinti)
f(iliae) Secundae,<BR>L(ucio)
Mulvio L(uci) f(ilio)
Primo,<BR>St(atio) Mulvio P(ubli)
f(ilio) Stabilio,<BR>C(aio) Mulvio
P(ubli) f(ilio) fratri,<BR>sibi et
suieis (:suis).

After our cleaning process, the text is transformed into:
publius mulvius publi filius
claudia atiliae quinti filiae
secundae, lucio mulvio luci filio
primo, statio mulvio publi filio
stabilio, caio mulvio publi filio
fratri, sibi et suis.

This version expands abbreviations, corrects grammar, and
removes unnecessary tokens such as line break markers.

C. Task Description

The tasks addressed in this study were twofold: Masked
Language Modeling (MLM) and epigraph dating (chrono-
logical classification).

The primary task, Masked Language Modeling, involved
fine-tuning the LatinBERT model to enable it to accurately
predict masked words within a sentence. This task is par-
ticularly relevant for historical and epigraphic texts, where
incomplete or partially preserved inscriptions are common. By
training the model to infer missing words based on surround-
ing context, we aim to improve its capacity for contextual
understanding and reconstruction of fragmentary Latin texts.
This approach is essential not only for enhancing the linguistic
capabilities of LatinBERT but also for supporting downstream
applications such as automatic restoration of damaged inscrip-
tions.

The secondary task, chronological classification, was imple-
mented as a multi-task learning objective wherein the model
was trained to simultaneously predict the approximate date
of each epigraph alongside performing MLM. Although con-
sidered auxiliary, this task contributes valuable temporal con-
textualization, which is crucial for epigraphic interpretation.
Moreover, incorporating age classification enriches the training
signal and provides a form of inductive bias, encouraging the
model to learn features relevant to both linguistic content and
historical periodization. This multi-task setup was designed
to enhance the model’s generalization ability and to capture
diachronic variations in the Latin language across centuries.

IV. METHODOLOGY

A. Model Architecture

The model implemented for the dual tasks of Masked
Language Modeling (MLM) and chronological classification,
termed LatinBERTForMLMAndClassification, lever-
ages the foundational LatinBERT encoder [2]. This pre-
trained BERT-base model [7] is instantiated using the method



provided by the researchers, ensuring that the final pooling
layer is present. This configuration ensures the availability
of both token-level hidden states and a sequence-level pooled
representation from the underlying BERT model [7].

Atop this shared LatinBERT encoder, two distinct task-
specific heads are integrated to perform the operations outlined
in Section III.C:

1) Masked Language Modeling (MLM) Head: To fa-
cilitate the MLM task, a dedicated head is appended.
This head comprises a single linear layer that takes
the final hidden-state sequence output from the Lat-
inBERT encoder. This output, characterized by di-
mensions of [batch_size, sequence_length,
hidden_size], is projected by the linear layer to the
model’s vocabulary size. This projection generates the
logits necessary for predicting masked tokens at each
position within the input sequence.

2) Sequence Classification Head: For the chronological
classification task, a separate head is employed. This
head processes the pooler output from the LatinBERT
encoder, which represents an aggregated embedding of
the entire input sequence (typically derived from the
[CLS] token’s final hidden state and passed through
a dedicated pooling layer). This pooler output, with
dimensions [batch_size, hidden_size], is first
passed through a dropout layer for regularization. Sub-
sequently, another linear layer maps this regularized
representation to the predefined classifications label, 12,
10 corresponding to the centuries from 5 BC to 5 AC,
and 2 for epigraphs dated before or after said period,
thereby producing the logits for the classification task.

During a forward pass, the
LatinBERTForMLMAndClassification model
processes input sequences through the common LatinBERT
encoder. The resulting output sequence is then fed to the MLM
head, while the pooler output is directed to the classification
head. This architecture enables simultaneous training on
both tasks, allowing the model to learn representations
beneficial for both token-level linguistic understanding and
sequence-level temporal categorization from the epigraphic
data.

B. Tokenization

Input epigraphic texts are processed using a cus-
tom tokenizer, LatinTokenizer, specifically designed
for this study. At its core, this tokenizer utilizes a
SubwordTextEncoder [8] from the tensor2tensor library
[9], pre-trained on a Latin corpus. This subword approach
is beneficial for handling the rich morphology of Latin and
out-of-vocabulary words that might arise from fragmentary
inscriptions or orthographic variations.

The LatinTokenizer establishes a vocabulary that in-
corporates both special tokens required by BERT-like ar-
chitectures and the subword units from the loaded encoder.
Specifically, the following special tokens are assigned fixed
integer IDs:

• [PAD] (ID: 0) for padding sequences to a uniform
length.

• [UNK] (ID: 1) for representing tokens unknown to the
subword vocabulary or deliberately marked as unknown.

• [CLS] (ID: 2) prepended to every sequence for classifi-
cation tasks.

• [SEP] (ID: 3) appended to every sequence (and used
to separate segments if applicable, though not primarily
used here).

• [MASK] (ID: 4) for replacing tokens during the Masked
Language Modeling task.

The subword units from the SubwordTextEncoder are
then integrated into the vocabulary with their original IDs
offset by +5 to prevent collision with these predefined special
token IDs.

The tokenization pipeline proceeds as follows:
1) Input text is first split into space-separated raw words.
2) A crucial pre-processing step, consistent with the corpus

manipulation described in Section III.B, involves iden-
tifying explicit markers of missing or unrestorable text
within the input (e.g., the string <unk>. Such markers
are directly converted to the model’s standard [UNK]
token.

3) Words that are not corpus-specific unknown markers
or predefined special tokens are then passed to the
underlying encoder, which segments them into subword
units based on the learned subword vocabulary.

4) The resulting subword IDs are adjusted by the +5 offset
and mapped to their corresponding subword strings to
form the final token sequence.

Finally, to prepare the input for the
LatinBERTForMLMAndClassification model,
the tokenized sequence is formatted according to standard
BERT conventions. This includes prepending a [CLS] token
and appending a [SEP] token. Sequences are then either
truncated or padded with [PAD] tokens to a maximum
sequence length, set to 128 in our experiments, and an
attention mask is generated accordingly. The resulting
vocabulary size for our experiments, including special tokens
and subword units, is 32900.

C. Training Procedure

The LatinBERTForMLMAndClassification model
was fine-tuned using the AdamW optimizer [10]. Key hy-
perparameters, including a learning rate of 7e-5, a weight
decay of 0.05, an Adam epsilon of 1e-8, the choice of a
linear learning rate scheduler with a warm-up phase over the
first 12% training steps, a total of 9.0 epochs, and a batch
size of 16 per device, were determined through empirical
methods to optimize performance on our specific dataset and
tasks. The maximum sequence length for input texts was
set to 128 tokens; this value was chosen because the vast
majority of the epigraphic texts in our corpus are shorter than
this limit, allowing for efficient processing while capturing
most of the relevant information. For the Masked Language



Modeling (MLM) task, tokens were masked with a probability
of 15%, following common BERT pre-training practices [7].
Gradient clipping was applied with a maximum gradient norm
of 1.0 to stabilize training, a value also refined empirically.
The overall loss function for our multi-task learning setup [11]
is a weighted sum of the individual losses from the two tasks:

Ltotal = LMLM + λ · Lclassification (1)

where LMLM is the CrossEntropyLoss for the MLM task,
and Lclassification is the CrossEntropyLoss for the chronological
classification task. The hyperparameter λ, which balances the
contribution of the classification task, was set to 0.5 in our
experiments, a value also found through empirical tuning. All
training and evaluation procedures were executed on a machine
with 64 GBs of RAM and an NVIDIA RTX 4070 with 16 GBs
of VRAM with a total run time of 1 hour and 33 minutes,
utilizing the PyTorch framework [12] and the Hugging Face
Transformers library [13].

D. Evaluation Metrics

To assess the performance of the
LatinBERTForMLMAndClassification model on
the two designated tasks, a comprehensive set of evaluation
metrics was employed. These metrics were calculated on a
held-out testing dataset, comprising 10% of the full dataset,
separated before training.

For the Masked Language Modeling (MLM) task, perfor-
mance was primarily evaluated using the following metrics:

• Perplexity (PPL): Calculated as the exponential of the
average MLM cross-entropy loss on the evaluation set.
Lower perplexity indicates better predictive performance.

• Top-1 Accuracy (Acc@1): The percentage of masked to-
kens for which the model’s highest probability prediction
was the correct token.

• Top-5 Accuracy (Acc@5): The percentage of masked
tokens for which the correct token was among the model’s
top 5 highest probability predictions.

• Top-10 Accuracy (Acc@10): The percentage of masked
tokens for which the correct token was among the model’s
top 10 highest probability predictions.

These MLM metrics provide insight into the model’s ability
to understand contextual information and predict plausible
linguistic units in place of masked tokens.

For the Chronological Classification task, which involves
assigning each epigraph to one of the 12 predefined temporal
periods, the following standard classification metrics were
utilized:

• Overall Accuracy: The proportion of epigraphs in the
evaluation set that were correctly assigned to their true
temporal period.

• Weighted Precision: The precision calculated for each
class and then averaged, weighted by the number of true
instances for each class. This metric accounts for class
imbalance.

• Weighted Recall: The recall calculated for each class and
then averaged, weighted by the number of true instances
for each class, also accounting for class imbalance.

• Weighted F1-score: The F1-score (harmonic mean of
precision and recall) calculated for each class and then
averaged, weighted by the number of true instances for
each class. This provides a single balanced measure of
performance, especially useful in the presence of class
imbalance.

The use of weighted averages for precision, recall, and F1-
score was chosen to provide a more robust evaluation given the
potential for imbalanced distribution of epigraphs across the
different temporal periods in the dataset. Model checkpoints
were saved based on the best combined evaluation loss, and
the final reported metrics correspond to the performance of
this best-performing checkpoint on the evaluation set.

V. RESULTS

This section presents the performance of our
LatinBERTForMLMAndClassification model on
the tasks of Masked Language Modeling (MLM) and
chronological classification, evaluated on the held-out test set.

A. Masked Language Modeling Performance

The efficacy of our model in predicting masked tokens
within Latin epigraphic texts was assessed using perplexity and
top-k accuracy metrics. Table I summarizes the performance
of this model and provides an ablation study comparing it
with two other configurations to contextualize its effective-
ness. Our primary model achieved a perplexity of 8.3 on
the evaluation set, indicating its proficiency in modeling the
linguistic structure of the epigraphic Latin. Furthermore, the
top-1 accuracy reached 63.7%, demonstrating that the model’s
most confident prediction was frequently correct. The accuracy
increased to 77.5% and 81.7% when considering the top-5
and top-10 predictions, respectively, highlighting the model’s
ability to often include the correct token within a small
set of plausible candidates. Furthermore, the performance of
our full model (Acc@1 63.7% on our EDR-derived dataset
of 82,534 inscriptions) represents a significant improvement
over previously reported results for fine-tuning LatinBERT on
Latin epigraphic data for MLM, such as the 4.02% Top-1
token accuracy achieved by Brunello et al. [6] on their larger
EDCS-derived dataset (211,601 inscriptions). This substantial
difference highlights the effectiveness of our specific corpus
manipulation techniques, multi-task learning strategy, and fine-
tuning procedure in markedly boosting the model’s ability to
predict lacunae in Latin inscriptions, even when working with
a comparatively smaller training set.

B. Qualitative Examples

To provide a qualitative insight into the model’s predictions,
we present two examples from our evaluation set. These exam-
ples illustrate different scenarios of the model’s performance
on the MLM task.



TABLE I
MLM PERFORMANCE ABLATION STUDY.

Model PPL Acc@1 (%) Acc@5 (%) Acc@10 (%)

Full model 8.3 63.7 77.5 81.7
No classification 15.7 55.3 70.0 74.9
Base model 4619.05 9.8 19.9 24.4

a) Example 1: All Masks Correctly Predicted as Top
Choice: The following example demonstrates a case where
the model successfully predicted the correct token as its first
choice for all masked positions detailed in the log.

Original Text:
[CLS] dis_ manibus_ ._ tiberius_ iulius_
amati us_ fecit_ sibi_ et_ coniugi _ et_
suis_ liberti s_ libert abus que_
utriusque_ sexus_ poster isq ue_ eorum_ ._
[SEP]

Masked Input Text:
[CLS] dis_ manibus_ [MASK] tiberius_
iulius_ amati us_ [MASK] sibi_ et_ coniugi _
[MASK] suis_ liberti s_ libert abus que_
utriusque_ sexus_ poster isq ue_ eorum_ ._
[SEP]

Note: The prediction logs below detail the model’s output
for four specific masked positions that were part of this test
instance.
MLM Predictions:

• Position 3 (Input: [MASK], True Original Target: ’.’):
1. . (ID: 8, Logit: 15.7743)
2. sacrum_ (ID: 6272, Logit: 9.4583)
3. , (ID: 7, Logit: 9.4232)
4. fecit (ID: 433, Logit: 8.6104)
5. fecerunt_ (ID: 2061, Logit: 7.0163)
... (and 5 more predictions)

• Position 8 (Input: [MASK], True Original Target: ’fecit_’):
1. fecit_ (ID: 433, Logit: 15.4278)
2. fecerunt_ (ID: 2061, Logit: 10.1594)
3. posuit_ (ID: 1291, Logit: 8.7752)
4. , (ID: 7, Logit: 7.6805)
5. vivus (ID: 15929, Logit: 7.2654)
... (and 5 more predictions)

• Position 12 (Input: ’’, True Original Target: ’’):
1. ’’ (ID: 9, Logit: 17.4233)
2. , (ID: 7, Logit: 7.2450)
3. i_ (ID: 19, Logit: 7.1876)
4. s_ (ID: 14, Logit: 7.1839)
5. ni_ (ID: 205, Logit: 7.1335)
... (and 5 more predictions)

• Position 13 (Input: [MASK], True Original Target: ’et_’):
1. et_ (ID: 10, Logit: 12.6462)
2. suae_ (ID: 459, Logit: 8.9087)
3. , (ID: 7, Logit: 8.6413)
4. suis (ID: 291, Logit: 8.2428)
5. filiis_ (ID: 1535, Logit: 7.3847)
... (and 5 more predictions)

b) Example 2: Correct Token Within Top Predictions:
This example illustrates a scenario where for one of the
masked tokens, the correct prediction was not the top choice
but was present within the top-10 predictions, specifically at
rank 8.

Original Text:
[CLS] bra etia e_ mani_ filiae_ quarta e_
[UNK] [SEP]

Masked Input Text:
[CLS] bra etia e_ [MASK] [MASK] quarta e_
[UNK] [SEP]

MLM Predictions:
• Position 4 (Input: [MASK], True Original Target: ’mani_’):

1. cai_ (ID: 11149, Logit: 11.4374)
2. quinti_ (ID: 20987, Logit: 10.3114)
3. titi_ (ID: 30796, Logit: 10.0980)
4. marci_ (ID: 13145, Logit: 10.0979)
5. libert (ID: 29484, Logit: 9.7493)
6. sexti_ (ID: 27842, Logit: 9.2751)
7. numeri_ (ID: 5488, Logit: 7.1043)
8. mani_ (ID: 18896, Logit: 7.0033)
9. luci (ID: 5218, Logit: 6.9648)

10. auli (ID: 18994, Logit: 6.0596)
• Position 5 (Input: [MASK], True Original Target: ’filiae_’):

1. filiae_ (ID: 4748, Logit: 12.8525)
2. ae_ (ID: 89, Logit: 10.3673)
3. ’’ (ID: 9, Logit: 8.5043)
4. filia (ID: 1750, Logit: 8.0327)
5. e_ (ID: 23, Logit: 7.2115)
... (and 5 more predictions)

These examples showcase the model’s ability to generate
contextually relevant completions, providing valuable insights
into its potential for assisting epigraphic text reconstruction.

c) Example 3: Uncertainty in Numerical Prediction:
Another interesting scenario emerges when the model predicts
numerical values, such as the number of days someone lived,
often recorded in funerary inscriptions. The following example
concerns the masked tokens in the phrase ‘... dies [MASK]
[MASK] . ‘ from a longer inscription. The true original target
for the first of these ‘[MASK]‘s (labeled as Position 54 in the
provided data) is ‘numero ‘, and for the second ‘[MASK]‘
(Position 55) is ‘xxii ‘. We focus on the predictions for
Position 55 to illustrate a specific challenge.

Original Text (with relevant masks filled for context):
[CLS] quinto_ egn atio_ galli eno_ [UNK] [UNK] tar roni
o_ pison [MASK] [MASK] clarissimo _ [MASK] ,_ nobili_
genere_ nato_ ,_ [MASK] [MASK] latinis_ litteris_ erudito _ ,_
quintus_ egn atiu [MASK] [MASK] enus_ perpetu us_ ,_ vir_
[MASK] [MASK] [MASK] pater_ fecit_ annos_ vixit_ numero_
xviii_ ,_ menses_ numero_ x_ ,_ dies_ numero_ xxii_ ._ [SEP]

Masked Input Text (sequence fed to model):
[CLS] quinto_ egn atio_ galli eno_ [UNK] [UNK] tar roni
o_ pison [MASK] [MASK] clarissimo _ [MASK] ,_ nobili_
genere_ nato_ ,_ [MASK] [MASK] latinis_ litteris_ erudito _ ,_
quintus_ egn atiu [MASK] [MASK] enus_ perpetu us_ ,_ vir_
[MASK] [MASK] [MASK] pater_ fecit_ annos_ vixit_ numero_
xviii_ ,_ menses_ numero_ x_ ,_ dies_ [MASK] [MASK] ._ [SEP]

MLM Predictions (for Position 55, the second [MASK]
after dies_):

• Position 55 (Input: [MASK], True Original Target: ’xxii_’):
1. ’iii_’ (ID: 201, Logit: 12.1328)
2. ’x_’ (ID: 134, Logit: 10.4840)
3. ’iiii_’ (ID: 2181, Logit: 9.8927)
4. ’v_’ (ID: 84, Logit: 9.5858)
5. ’ii_’ (ID: 101, Logit: 8.9988)



TABLE II
CLASSIFICATION PERFORMANCE.

Metric Value

Accuracy (%) 68.8
W. Precision 67.7
W. Recall 68.7
W. F1-score 67.9

6. ’i_’ (ID: 19, Logit: 8.5722)
7. ’vi_’ (ID: 206, Logit: 8.5265)
8. ’ix_’ (ID: 501, Logit: 8.4852)
9. ’xv_’ (ID: 752, Logit: 8.4433)

10. ’_’ (ID: 9, Logit: 8.4370)

As observed from the predictions for Position 55, the model
suggests various plausible numerical tokens (e.g., ‘iii ‘, ‘x ‘,
‘v ‘) or parts of them. This indicates it understands a number
is expected in this context (following ‘dies ‘ and, in the com-
plete original, ‘numero ‘). However, it does not confidently
pinpoint the correct target ‘xxii ‘ as its top choice. This be-
havior underscores a key challenge: while the model learns that
a numerical value is appropriate, predicting the exact number
is a difficult task, reflecting the ambiguities and complexities
that even human epigraphers face when restoring fragmented
or variably abbreviated numerals in ancient inscriptions.

C. Chronological Classification Performance

The model’s capability to determine the temporal pe-
riod of epigraphs was evaluated using standard classi-
fication metrics. Table II presents the overall accuracy
and weighted precision, recall, and F1-score for our
LatinBERTForMLMAndClassification model. The
model achieved an overall accuracy of 68.8% in classifying
epigraphs into one of the 12 defined chronological peri-
ods. The weighted F1-score, which accounts for potential
class imbalances, was 67.9%, with a weighted precision of
67.7% and a weighted recall of 68.7%. It is important to
note that Table II only presents the results for our primary
LatinBERTForMLMAndClassification model. As the
chronological classification task was considered an auxiliary
objective, primarily intended to potentially enhance the main
MLM task rather than being a central focus of this study, a
comparative analysis with other models or ablations for this
specific task was not performed.

VI. CONCLUSION

This paper introduced a specialized BERT-based model,
LatinBERTForMLMAndClassification, fine-tuned on
the extensive Epigraphic Database Roma (EDR) for the task
of Latin epigraphic text completion. Our results demonstrate
the efficacy of this approach, with the model achieving a
perplexity of 8.3 and a top-1 accuracy of 63.7% on the Masked
Language Modeling (MLM) task, as detailed in Table I. No-
tably, the inclusion of an auxiliary chronological classification

task, which itself achieved an accuracy of 68.8% (Table II),
appeared to enhance the primary MLM performance, sug-
gesting a beneficial synergistic effect from the multi-task
learning setup. This significantly surpasses the performance of
a non-fine-tuned LatinBERT and a model fine-tuned solely on
MLM, underscoring the value of domain-specific adaptation
and multi-task learning for understanding and reconstructing
fragmentary ancient texts. Future work could explore several
promising directions. Firstly, incorporating more granular epi-
graphic metadata, such as precise provenance or inscription
type, could further refine the model’s contextual understanding
and dating capabilities. Secondly, extending the model to han-
dle the generation of longer missing sequences, rather than just
single masked tokens, would be a significant step towards prac-
tical, full-scale text reconstruction. Additionally, training the
model on an abbreviation disambiguation task would further
help the epigraphers in their reconstruction tasks, automating a
key step in the process. Finally, creating an interactive tool that
allows scholars to leverage these predictions and provide feed-
back could bridge the gap between AI-driven reconstruction
and expert epigraphic practice, ultimately advancing the study
and preservation of these invaluable historical documents.
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